Multiscale modeling and simulation of polymer flow

Roland KEUNINGS, Université Catholique de Louvain, Belgium

Rheology and Non-Newtonian fluid mechanics

- Non-Newtonian behaviour: phenomenology
- o Viscoelastic effects in complex flows
- o Illustrations: polymer melts and solutions

Multiscale modeling

- o Memory and structure
- o Macroscopic conservation equations
- o Kinetic theory description: the Fokker-Planck equation
- o Stress-configuration relation
- o Macroscopic constitutive equations and closure approximations
- o Illustrations: dumbbell and tube models

• Computational techniques and simulation of complex flows

- o Spectrum of available approaches
- o Numerical challenges
- Macroscopic techniques
- Micro-Macro techniques
- o Simulation of complex flows: a few examples

Complex flows of micro/nano structured fluids: Reinforced polymer composites

Francisco CHINESTA, ESI & EADS Chair, Ecole Centrale de Nantes, France

Rheology of short fiber suspensions

- o Microscopic description: the Jeffery's equation
- o Kinetic theory description: the Fokker-Planck equation
- Macroscopic description: moments-based descriptions & closure relations
- o From dilute to semi-dilute regimes: rods interactions
- o From semi-concentrated to concentrated regimes: aggregation
- Multi-scale description of rods clusters
- o On the numerical modeling:
 - Flow solvers: mesh versus meshless
 - Particles-based techniques
 - Stochastic versus deterministic solution of the Fokker-Planck equation
 - Advanced solvers: the Proper Generalized Decomposition

Processing

- o 3D flows
- Squeeze flows
- o Injection processes
- o Extrusion processes

Advanced topics

- Descriptions based on higher order kinematics
- Introducing elasticity effects
- o Accounting for rods bending
- o Delaying orientation mechanisms: ad-hoc techniques and fractional mechanics
- o Non Newtonian solvents
- o Long fibers: the TIF model
- o Linear and nonlinear homogenization
- o Modeling electrical conductivity from a multi-scale approach

Flows of simple and complex fluids in microstructures: Reactive processing and novel composite materials

Christophe BINETRUY, FAURECIA Chair, Ecole Centrale de Nantes, France

- Introduction
- Description of fibrous microstructures
 - Examples of polymer composites
 - o Monodisperse porosity medium
 - o Bidisperse porosity medium
- Governing equations for flows in porous media
 - o Pore-scale description
 - o Macroscopic scale: upscaling
- Flow of simple fluids in non deformable fibrous microstructures
 - o Negligible inertia
 - o Fluid inertia
 - o Saturation
- Flow of complex fluids in non-deformable fibrous microstructures
 - o Slightly compressible fluids
 - o Highly compressible fluids
 - o Reactive fluids
 - o Non-Newtonian fluids
 - o Fluid with microscopic fillers
- Flow of simple fluids in deformable consolidating fibrous microstructures
 - Compression of saturated composites
 - o Through-thickness flow in initially dry fibrous microstructures